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Abstract: Bicomplex number can be regarded as a well-known extension of com-
plex number and is of dimension four. In this paper, we define a new notion of
manifolds termed as almost bicomplex, bicomplex, bicomplex Hermite manifold
and discuss some interesting properties of Nijenhuis tensor, contravariant almost
analytic vector fields etc. in this sequel.
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1. Introduction, Definitions and Notations
Bicomplex numbers, a well-known extension of complex numbers of dimension

four have been studied for quite a long time and a lot of work has been done in
this area. In 1844 the skew field of quaternions was introduced by W. R. Hamilton,
a well-known extension of the field of complex numbers {cf. [8]}. In quaternions,
there are three imaginary units i, j, k that anti-commute with the property ij = k.

The beauty of the theory of quaternions is that they form a field where all the
ordinary operations can be accomplished. Although from the algebraic point of
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view the lack of commutativity is not such a terrible problem. But this lack of
commutativity opens a new direction of thought where it is considered as a four
dimensional algebra containing C as a subalgebra that preserves the commutativity
property. This can be done by considering two imaginary units i, j with ij = ji =
k. This k is known as a hyperbolic imaginary unit, i.e., an element such that
k2 = 1.

In 1848, J. Cockle wrote a series of papers in which he introduced a new algebra
that he called the algebra of tessarines {cf. [3], [4], [5] & [6]}. Inspired by the work
of Hamilton and Cockle, in 1892, Carrado Segre published a paper in which he
defined an infinite set of algebras and gave the concept of bicomplex numbers. In
this paper, he gave us the idempotent elements 1+ij

2
and 1−ij

2
which plays most

important role in the entire theory of bicomplex analysis. After that, a few other
mathematicians namely Spampinato and S. Dragoni developed the first rudiments
of function theory on bicomplex numbers.

The next major push in the study of bicomplex analysis was given by J.
D. Riley [13], in 1953 he developed the theory of functions of bicomplex variables.
But the most recommendable contribution was done by G. B. Price [12], the theory
of holomorphic functions of a bicomplex variable as well as multicomplex variables
is widely developed in his work.

Definition 1.1. [11] The set of bicomplex numbers C2 is defined by C2 = {z : z =
a0+ ia1+ja2+ka3 : a0, a1, a2, a3 ∈ R} or equivalently C2 = {z1+jz2 : z1, z2 ∈ C1},
where C1 is the set of complex numbers with imaginary unit i such that i2 = j2 =
−k2 = −1 and ij = ji = k.

Definition 1.2. [11] For any bicomplex number z = z1 + z2j the conjugation is
defined in the following way:

zi = z1 + z2j, zj = z1 − z2j, zk = z1 − z2j.

Definition 1.3. [7] A complex structure on a finite dimensional real vector space
V is an endomorphism F (i.e., F : V → V is a vector valued real linear function)
such that

F (F (X)) = −X ,∀X ∈ V

i.e., F 2 = −I,

where I stands for identity transformation.
A real vector space V with complex structure F can be turned into a complex vector
space by defining scalar multiplication by complex number as follows:
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(a+ ib)X = aX + bF (X),

for X ∈ V and a, b, c, d ∈ R. Clearly the real dimension m of V must be even and
m/2 is the complex dimension of V .

Definition 1.4. [7] An almost complex structure on a real differentiable manifold
M of dimension n(n = 2m,m is a positive integer) is a tensor field F which is
at every point x of M , an endomorphism of the tangent space Tx(M) such that
F 2 = −I, where I denotes the identity transformation Tx(M). A manifold with a
fixed almost complex structure is called an almost complex manifold.

Definition 1.5. [7] A vector field is said to be contravariant almost analytic if

(LV F )(X) = 0,

where LV denotes the Lie derivative with respect to the vector field V .

Definition 1.6. [7] A vector field is said to be strictly contravariant almost analytic
if

(LV F )(X) = 0, and

(LF (V )F )(X) = 0,

where LV denotes the Lie derivative with respect to the vector field V .

Definition 1.7. [7] An almost complex manifold endowed with a metric g such
that

g(F (X), F (Y )) = g(X, Y )

is called an almost Hermite manifold and (F, g) is called an almost Hermite struc-
ture.
Before proving our main results, we have defined the following definitions which
are required to prove our results.

Definition 1.8. Let F1, F2 : V → V be vector valued functions such that

F1(F1(X)) = −X , F2(F2(X)) = −X

and

F1(F2(X)) = F2(F1(X) = X, ∀X ∈ V

i.e., F 2
1 = −I , F 2

2 = −I, and F1F2 = F2F1 = I,

where I stands for identity transformation.
A real vector space V with complex structures F1 and F2 can be turned into

a bicomplex vector space by defining scalar multiplication by bicomplex number as
follows:
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(a+ i1b+ i2c+ i1i2d)X = aX + bF1(X) + cF2(X) + dF1(F2(X)),

for all X ∈ V and a, b, c, d ∈ R.

Definition 1.9. An almost bicomplex structure on a real differentiable manifold
M of dimension n (n = 4m,m ∈ N) is a tensor field consists of F1 and F2 which
is at every point x of M , an endomorphism of the tangent space Tx(M) such that
F 2
1 = −I, F 2

2 = −I and F1F2 = F2F1 but F1 ̸= F2, where I denotes the identity
transformation Tx(M). A manifold with a fixed almost bicomplex structure is called
an almost bicomplex manifold.

Definition 1.10. (Bicomplex manifold) A bicomplex manifold is a Riemannian
manifold endowed with integrable almost complex structures F1 and F2 with respect
to the Riemannian metric and satisfy the relations F 2

1 = F 2
2 = −I. If (M, g, F1, F2)

is a bicomplex manifold, then the tangent space TxM is a bicomplex vector space
for each point x of M .

Definition 1.11. Let F1 and F2 be two almost complex structures in a bicomplex
manifold Mn(n = 2m, where m is a positive integer). Nijenhuis tensor with respect
to F1 and F2 is a vector valued bilinear function N defined by

N(X, Y ) = [F1(X), F2(Y )] + [X, Y ]− F1[F2(X), Y ]− F2[X,F1(Y )]

where X, Y ∈ χ(M) and [, ] stands for Lie bracket.

Definition 1.12. An almost bicomplex Hermite manifold endowed with a metric
g such that

g(F1(X), F2(Y )) = g(X, Y ),

where g(F1(X), F1(Y )) = −g(X, Y ) and g(F2(X), F2(Y )) = −g(X, Y )
is called an almost bicomplex Hermite manifold and (F1, F2, g) is called an almost
bicomplex Hermite structure.

Definition 1.13. A vector field is said to be contravariant almost bicomplex ana-
lytic if

(LV F1)(X) = 0 and (LV F2)(X) = 0,

where LV denotes the Lie derivative with respect to the vector field V .

Definition 1.14. A vector field X is said to be strictly contravariant almost bi-
complex analytic if

(LV F1)(X) = 0, (LF1(V )F1)(X) = 0,

and

(LV F2)(X) = 0, (LF2(V )F2)(X) = 0,
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where LV denotes the Lie derivative with respect to the vector field V .

Definition 1.15. Let Mn be bicomplex manifold with bicomplex structures F1 and
F2. The fundamental 2-form F̃1 and F̂2 and Mn is defined by

F̃1(X, Y ) = g(F1(X), Y ) and F̂2(X, Y ) = g(X,F2(Y ))

for all vector fields X and Y on Mn.

2. Lemmas
In this section, we present the following lemmas which will be needed in the

sequel.

Lemma 2.1. In an almost complex manifold Mn(n = 2m), the almost complex
structure F has m eigen values i and m eigen values −i.

Lemma 2.2. In an almost complex manifold a vector field X is contravariant
almost analytic if and only if

LV F (X) = F (LVX), orF (LV F (X)) + LVX = 0.

Lemma 2.3. If a vector field V in an almost complex manifold M is strictly
contravariant almost analytic, then N(V, Y ) = 0 for every vector field X.

3. Main results
In this section, we present the main results of the paper.

Theorem 3.1. Let (M,F1, F2, g) be an almost bicomplex Hermite manifold. Then
g(F1(X), F2(Y )) = g(F2(X), F1(Y )).
Proof. Here

g(F1(X), F2(Y )) =g(−F2(X), F2(Y ))

=g(−F2(X),−F1(Y ))

=g(F2(X), F1(Y )).

Therefore, g(F1(X), F2(Y )) = g(F2(X), F1(Y )).

Theorem 3.2. In an almost bicomplex manifold (M,F1, F2, g)

(a) N(X,F1(X)) = F1[F1(X), F2(X)]

(b) N(F2(X), X) = F2[F1(X), F2(X)]

(c) N(F1(X), X) = −N(X,F2(X)) = [F1(X), X] + [F2(X), X]
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(d) N(F1(X), Y ) = [F1(X), Y ]− [X,F2(Y )]− F1[X, Y ]− F2[F1(X), F1(Y )]

(e) N(X,F1(Y )) = [F1(X), Y ] + [X,F1(Y )]− F1[F2(X), F1(Y )]− F2[X, Y ]

(f) N(F1(X), F2(Y )) = [X, Y ] + [F1(X), F2(Y )]− F1[X,F2(Y )]
− F2[F1(X), Y ]

(g) F1(N(X, Y )) = F1[F1(X), F2(Y )] + F1[X, Y ] + [F2(X), Y ]− [X,F1(Y )]

(h) F2(N(X, Y )) = F2[F1(X), F2(Y )] + F2[X, Y ]− [F2(X), Y ] + [X,F1(Y )]

(i) F2(N(F1(X), F2(Y ))) = F2[X, Y ] + F2[F1(X), F2(Y )]− [X,F2(Y )]
+ [F1(X), Y ]

Proof. (a): We have

N(X,F1(X)) = [F1(X), F2F1(X)] + [X,F1(X)]− F1[F2(X), F1(X)]

− F2[X,F 2
1 (X)]

= [F1(X), X] + [X,F1(X)]− F1[F2(X), F1(X)]− F2[X,X]

= F1[F1(X), F2(X)]

This proves (a).
(b): We have

N(F2(X), X) = [F1F2(X), F2(X)] + [F2(X), X]− F1[F
2
2 (X), X]

− F2[F2(X), F1(X)]

= [X,F2(X)] + [F2(X), X] + F1[X,X]− F2[F2(X), F1(X)]

= F2[F1(X), F2(X)]

This proves (b).
(c):

N(X,F2(X)) = [F1(X), F 2
2 (X)] + [X,F2(X)]− F1[F2(X), F2(X)]

− F2[X,F1F2(X)]

= −[F1(X), X] + [X,F2(X)]− F1[F2(X), F2(X)] + F2[X,X]

= [X,F1(X)] + [X,F2(X)]
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and

N(F1(X), X) = [F 2
1 (X), F2(X)] + [F1(X), X]− F1[F2F1(X), X]

− F2[F1X,F1(X)]

= −[X,F2(X)] + [F1(X), X]− F1[F2F1(X), X]

− F2[F1(X), F1(X)]

= −[X,F1(X)]− [X,F2(X)]

= −N(X,F2(X))

This proves (c).
(d):

N(F1(X), Y ) = [F 2
1 (X), F2(Y )] + [F1(X), Y ]− F1[F2F1(X), Y ]

− F2[F1(X), F1(Y )]

= [F1(X), Y ]− [X,F2(Y )]− F1[X, Y ]− F2[F1(X), F1(Y )]

This proves (d).
(e):

N(X,F1(Y )) = [F1(X), F2F1(Y )] + [X,F1(Y )]− F1[F2(X), F1(Y )]

− F2[X,F 2
1 (Y )]

= [F1(X), Y ] + [X,F1(Y )]− F1[F2(X), F1(Y )]− F2[X, Y ]

This proves (e).
(f):

N(F1(X), F2(Y )) = [F 2
1 (X), F 2

2 (Y )] + [F1(X), F2(Y )]

− F1[F2F1(X), F2(Y )]− F2[F1(X), F1F2(Y )]

= [X, Y ] + [F1(X), F2(Y )]− F1[X,F2(Y )]− F2[F1(X), Y ]

This proves (f).
(g):

F1(N(X, Y )) = F1[F1(X), F2(Y )] + F1[X, Y ]− F 2
1 [F2(X), Y ]

− F1F2[X,F1(Y )]

= F1[F1(X), F2(Y )] + F1[X, Y ] + [F2(X), Y ]− [X,F1(Y )]
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This proves (g).
(h) :

F2(N(X, Y )) = F2[F1(X), F2(Y )] + F2[X, Y ]− F1F1[F2(X), Y ]

− F 2
2 [X,F1(Y )]

= F2[F1(X), F2(Y )] + F2[X, Y ]− [F2(X), Y ] + [X,F1(Y )]

This proves (h).
(i):

F2(N(F1(X), F2(Y ))) = F2[F1F1(X), F2F2(Y )] + F2[F1(X), F2(Y )]

− F2F1[F2F1(X), F2(Y )]− F 2
2 [F1(X), F1F2(Y )]

= F2[X, Y ] + F2[F1(X), F2(Y )]− [X,F2(Y )]

+ [F1(X), Y ]

This completes the proof of (i).

Theorem 3.3. In an almost bicomplex manifold Mn(n = 2m), the complex struc-
tures F1 has m/2 eigen values i and m/2 eigen values −i and F2 has m/2 eigen
values j and m/2 eigen values −j.
Proof. Let Mn(n = 2m) be an almost bicomplex manifold with complex struc-
tures F1 and F2. That is, F1 and F2 are vector valued real linear functions on M
such that

F1(X) = X, F2(X) = X and F 2
1 = −X, F 2

2 = −X but F1 ̸= F2.

Also, let ρ1 and ρ2 be eigen values of F1 and F2 corresponding to the eigen
vectors Z and W respectively. Then we get that

F1(Z) = ρ1(Z) and F2(W ) = ρ2(W ).

Therefore, −Z = F 2
1 (Z) = ρ1(F (Z)) = ρ21(Z), i.e., (ρ

2
1 + 1)Z = 0 and −W =

F 2
2 (W ) = ρ2(F (W )) = ρ22(W ), i.e., (ρ22 + 1)W = 0. Hence ρ21 = −1 and ρ22 = −1.

Since F1 and F2 are real valued linear functions and of rank 2m, therefore there
are m/2 pairs of eigen values i and −i of F1 and m/2 pairs of eigen values j and
−j of F2.
This completes the proof.

Theorem 3.4. In an almost bicomplex manifold Mn(n = 4m), a vector field X is
contravariant almost bicomplex analytic if and only if

LV F1(X) = F1(LVX), or F1(LV F1(X)) + LVX = 0,

LV F2(X) = 0 F2(LV F2(X)) + LVX = 0.
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Proof. We have

(LV F1)(X) = LV F1(X)− F1(LVX)

and (LV F1)(X) = LV F1(X)− F1(LVX)

If V is contravariant almost bicomplex analytic, then

(LV F1)(X) = 0 and (LV F2)(X) = 0.

So

(LV F1)(X) = F1(LVX)

or, F1(LV F1(X)) = F 2
1 (LVX) = −LVX

and

(LV F2) = F2(LVX)

or, F2(LV F2(X)) = F 2
2 (LVX) = −LVX,

i.e., F1(LV F1(X)) + LVX = 0 and F2(LV F2(X)) + LVX = 0.

Conversely, let LV F1(X) = F1(LVX) and LV F2(X) = F2(LVX). Then

(LV F1)(X) = LV F1(X)− F1(LVX) = 0

and (LV F2)(X) = LV F2(X)− F2(LVX) = 0

So, V is contravariant almost bicomplex analytic.

Theorem 3.5. If a vector field V in an almost bicomplex manifold is strictly
contravariant almost bicomplex analytic, then N(V, Y ) = 0 for every vector field
X.
Proof. Let V be strictly contravariant almost bicomplex analytic.
Then

(LV F1)(X) = 0, (LV F2)(X) = 0

and (LF1(V )F )(X) = 0, (LF2(V )F )(X) = 0

From LV F1(X) = F1(LVX) and LV F2(X) = F2(LVX), we get that

[V, F1(X)] = F1([V,X]), [V, F2(X)] = F2([V,X])

and [F1(V ), F1(X)] = F1([F1(V ), X]), [F2(V ), F2(X)] = F2([F2(V ), X])
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Now

N(V,X) =[F1(V ), F2(X)] + [V,X]− F1[F2(V ), X]− F2[V, F1(X)]

=F2[F1(V ), (X)] + [V,X]− F1[F2(V ), X]− F2F1[V,X]

=− F2[X,F1(V )] + [V,X] + F1[X,F2(V )]− [V,X]

=− F2F1[X, V ] + F1F2[X, V ]

=− [X, V ] + [X, V ] = 0.

This proves the theorem.

Theorem 3.6. In an almost bicomplex Hermite manifold the following relations
hold:

(a) F̃1(X, Y ) = −F̂2(X, Y )

(b) F̃1(F1(X), F2(Y )) = −F̂2(X, Y )

(c) F̃1(F2(X), F1(Y )) = −F̃1(X, Y )

(d) F̂2(F1(X), F2(Y )) = −F̃1(X, Y )

(e) F̂2(F2(X), F1(Y )) = −F̂2(X, Y )

Proof. (a): We know that g(F1(X), F2(Y )) = g(X, Y )
Putting X = F1(X), we get

g(F 2
1 (X), F2(Y )) = g(F1(X), Y )

or, − g(X,F2(Y )) = g(F1(X), Y )

or, − F̂2(X, Y )) = F̃1(X, Y )

or, F̃1(X, Y ) = −F̂2(X, Y )

This completes the proof of (a).
(b): Putting X = F1(X) and Y = F2(Y ) in F̃1(X, Y ) = g(F1(X), Y ), we get

F̃1(F1(X), F2(Y )) = g(−X,F2(Y ))

= −g(X,F2(Y ))

= −F̂2(X, Y )
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Therefore, F̃1(F1((X), F2(Y )) = −F̂2(X, Y )
This completes the proof of (b).
(c): Putting X = F2(X) and Y = F1(Y ) in F̃1(X, Y ) = g(F1(X), Y )

F̃1(F2(X), F1(Y )) = g(F1F2(X), F1(Y ))

= g(X,F1(Y ))

= −g(F1(X), Y )

= −F̃1(X, Y )

Therefore, F̃1(F2(X), F1(Y )) = −F̃1(X, Y )
This completes the proof of (c).
(d): Putting X = F1(X) and Y = F2(Y ) in F̂2(X, Y ) = g(X,F2(Y ))

F̂2(F1(X), F2(Y )) = g(F1(X), F 2
2 (Y ))

= −g(F1(X), Y )

= −F̃1(X, Y )

Therefore, F̂2(F1(X), F2(Y )) = −F̃1(X, Y ).
This completes the proof of (d).
(e): Putting X = F2(X) and Y = F1(Y ) in F̂2(X, Y ) = g(X,F2(Y ))

F̂2(F2(X), F1(Y )) = g(F2(X), F2F1(Y ))

= g(F2(X), Y )

= −g(X,F2(Y ))

= −F̂2(X, Y )

Therefore, F̂2(F2(X), F1(Y )) = −F̂2(X, Y ).
This completes the proof of (e).
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